1. Retour à l'accueil
  2. connexion
  3. Enseignement scientifique première
  4. Une longue histoire de la matière
  5. Le Soleil, notre source d’énergie
  6. La Terre, un astre singulier
  7. Son et musique, porteurs d’information
Une longue histoire de la matière
Présentation :L’immense diversité de la matière dans l’Univers se décrit à partir d’un petit nombre de particules élémentaires qui se sont organisées de façon hiérarchisée, en unités de plus en plus complexes, depuis le Big Bang jusqu’au développement de la vie.
Histoire, enjeux et débats :De Fraunhofer à Bethe : les éléments dans les étoiles. Hooke, Schleiden et Schwann : de la découverte de la cellule à la théorie cellulaire. Becquerel, Marie Curie : la découverte de la radioactivité, du radium. Industrie des métaux et du verre.
Un niveau d’organisation : les éléments chimiques
Présentation :Comment, à partir du seul élément hydrogène, la diversité des éléments chimiques est-elle apparue ? Aborder cette question nécessite de s’intéresser aux noyaux atomiques et à leurs transformations. Cela fournit l’occasion d’introduire un modèle mathématique d’évolution discrète.
Les notions, déjà connues, de noyaux, d’atome, d’élément chimique et de réaction nucléaire sont remobilisées. Aucune connaissance n’est exigible sur les différents types de radioactivité. L’évolution du nombre moyen de noyaux restants au cours d’une désintégration radioactive se limite au cas de durées discrètes, multiples entiers de la demi-vie. Aucun formalisme sur la notion de suite n’est exigible. Les fonctions exponentielle et logarithme ne font pas partie des connaissances attendues.

SavoirsSavoir-faire
Savoirs :Les noyaux des atomes de la centaine d’éléments chimiques stables résultent de réactions nucléaires qui se produisent au sein des étoiles à partir de l’hydrogène initial. La matière connue de l’Univers est formée principalement d’hydrogène et d’hélium alors que la Terre est surtout constituée d’oxygène, d’hydrogène, de fer, de silicium, de magnésium et les êtres vivants de carbone, hydrogène, oxygène et azote.Savoir-faireProduire et analyser différentes représentations graphiques de l’abondance des éléments chimiques (proportions) dans l’Univers, la Terre, les êtres vivants. L’équation d’une réaction nucléaire stellaire étant fournie, reconnaître si celle-ci relève d’une fusion ou d’une fission
Savoirs :Certains noyaux sont instables et se désintègrent (radioactivité). L’instant de désintégration d’un noyau radioactif individuel est aléatoire. La demi-vie d’un noyau radioactif est la durée nécessaire pour que la moitié des noyaux initialement présents dans un échantillon macroscopique se soit désintégrée. Cette demi-vie est caractéristique du noyau radioactif.Savoir-faireCalculer le nombre de noyaux restants au bout de n demi-vies Estimer la durée nécessaire pour obtenir une certaine proportion de noyaux restants. Utiliser une représentation graphique pour déterminer une demi-vie. Utiliser une décroissance radioactive pour une datation (exemple du carbone 14).
Des édifices ordonnés : les cristaux
Présentation :L’organisation moléculaire étant déjà connue, ce thème aborde une autre forme d’organisation de la matière : l’état cristallin (qui revêt une importance majeure, tant pour la connaissance de la nature - minéraux et roches, squelettes, etc. - que pour ses applications techniques). La compréhension de cette organisation au travers des exemples choisis mobilise des connaissances sur la géométrie du cube. Elle fournit l’occasion de développer des compétences de représentation dans l’espace et de calculs de volumes.
Les notions, déjà connues, d’entité chimique, de roche et de minéral sont remobilisées. L’objectif est de présenter l’organisation de la matière propre à l’état cristallin à partir d’exemples. La diversité des systèmes cristallins et des minéraux est seulement évoquée. La description de l’état cristallin est l’occasion d’utiliser les mathématiques (géométrie du cube et de la sphère, calculs de volumes, proportions) pour décrire la nature et quantifier ses propriétés.

SavoirsSavoir-faire
Savoirs :Le chlorure de sodium solide (présent dans les roches, ou issu de l’évaporation de l’eau de mer) est constitué d’un empilement régulier d’ions : c’est l’état cristallin.Savoir-faireUtiliser une représentation 3D, informatisée du cristal de chlorure de sodium. Relier l’organisation de la maille au niveau microscopique à la structure du cristal au niveau macroscopique.
Savoirs :Plus généralement, une structure cristalline est définie par une maille élémentaire répétée périodiquement. Un type cristallin est défini par la forme géométrique de la maille, la nature et la position dans cette maille des entités qui le constituent. Les cristaux les plus simples peuvent être décrits par une maille cubique que la géométrie du cube permet de caractériser. La position des entités dans cette maille distingue les réseaux cubique simple et cubique à faces centrées. La structure microscopique du cristal conditionne certaines de ses propriétés macroscopiques, dont sa masse volumique.Savoir-fairePour chacun des deux réseaux (cubique simple et cubique à faces centrées) : - représenter la maille en perspective cavalière ; - calculer la compacité dans le cas d’entités chimiques sphériques tangentes ; - dénombrer les atomes par maille et calculer la masse volumique du cristal.
Savoirs :Un composé de formule chimique donnée peut cristalliser sous différents types de structures qui ont des propriétés macroscopiques différentes. Ainsi les minéraux se caractérisent par leur composition chimique et leur organisation cristalline. Une roche est formée de l’association de cristaux d’un même minéral ou de plusieurs minéraux. Des structures cristallines existent aussi dans les organismes biologiques (coquille, squelette, calcul rénal, etc.).Savoir-faireDistinguer, en termes d’échelle et d’organisation spatiale, maille, cristal, minéral, roche. Les identifier sur un échantillon ou une image.
Savoirs :Dans le cas des solides amorphes, l’empilement d’entités se fait sans ordre géométrique. C’est le cas du verre. Certaines roches volcaniques contiennent du verre, issu de la solidification très rapide d’une lave.Savoir-faireMettre en relation la structure amorphe ou cristalline d’une roche et les conditions de son refroidissement.
Une structure complexe : la cellule vivante
Présentation :Dans le monde, la matière s’organise en structure d’ordre supérieur à l’échelle moléculaire. Un exemple est ici proposé : la structure cellulaire.
SavoirsSavoir-faire
Savoirs :La découverte de l’unité cellulaire est liée à l’invention du microscope. L’observation de structures semblables dans de très nombreux organismes a conduit à énoncer le concept général de cellule et à construire la théorie cellulaire. Plus récemment, l’invention du microscope électronique a permis l’exploration de l’intérieur de la cellule et la compréhension du lien entre échelle moléculaire et cellulaire.Savoir-faireAnalyser et interpréter des documents historiques relatifs à la théorie cellulaire. Situer les ordres de grandeur : atome, molécule, organite, cellule, organisme
Savoirs :La cellule est un espace séparé de l’extérieur par une membrane plasmique. Cette membrane est constituée d’une bicouche lipidique et de protéines. La structure membranaire est stabilisée par le caractère hydrophile ou lipophile de certaines parties des molécules constitutives.Savoir-faireRelier l’échelle de la cellule et celle de la molécule (exemple de la membrane plasmique). Schématiser la membrane plasmique à partir de molécules dont les parties hydrophile/lipophile sont identifiées.