1. Retour à l'accueil
  2. connexion
  3. EDS Physique terminale (2020)
  4. Mesure et incertitudes
  5. Constitution et transformations de la matière
    1. 1. 1. Déterminer la composition d’un système par des méthodes physiques et chimiques
      1. 2. Modéliser l’évolution temporelle d’un système, siège d’une transformation
        1. 3. 3. Prévoir l’état final d’un système, siège d’une transformation chimique
          1. 4. 4. Élaborer des stratégies en synthèse organique
          2. Mouvement et interactions
            1. 1. 1. Décrire un mouvement
              1. 2. 2. Relier les actions appliquées à un système à son mouvement
                1. 3. 3. Modéliser l’écoulement d’un fluide
                2. L’énergie : conversions et transferts
                  1. 1. 1. Décrire un système thermodynamique : exemple du modèle du gaz parfait
                    1. 2. 2. Effectuer des bilans d’énergie sur un système : le premier principe de la thermodynamique
                    2. Ondes et signaux
                      1. 1. 1. Caractériser les phénomènes ondulatoires
                        1. 1. 2. Former des images, décrire la lumière par un flux de photons
                          1. 2. B) Décrire la lumière par un flux de photons
                            1. 3. 3. Étudier la dynamique d’un système électrique
Présentation :
Cette partie prolonge les notions abordées en classe de première par l’étude des images formées par un dispositif associant deux lentilles convergentes : la lunette astronomique. La description de l’effet photoélectrique permet d’introduire le caractère particulaire de la lumière et conduit à effectuer un bilan énergétique. Cette partie se prête à des activités expérimentales variées et permet d'aborder de nombreuses applications actuelles ou en développement : il concerne en effet aussi bien les bases de l’optique instrumentale que les nombreux dispositifs permettant d’émettre ou de capter des photons, en particulier pour convertir l'énergie lumineuse en énergie électrique et réciproquement. Cette partie fournit également l’opportunité d’évoquer le processus de construction des connaissances scientifiques, en s'appuyant par exemple sur les débats scientifiques historiques à propos de la nature de la lumière.

Notions abordées en première :
Relation de conjugaison d’une lentille mince convergente, image réelle, image virtuelle, relation entre longueur d'onde, célérité de la lumière et fréquence, le photon, énergie d’un photon, bilan de puissance dans un circuit, rendement d’un convertisseur, rayonnement solaire, loi de Wien, puissance radiative.
Notions et contenusCapacités exigibles Activités expérimentales support de la formation
A) Former des images
Savoirs :
Modèle optique d'une lunette astronomique avec objectif et oculaire convergents. Grossissement.
Savoir-faire
Représenter le schéma d’une lunette afocale modélisée par deux lentilles minces convergentes ; identifier l’objectif et l’oculaire. Représenter le faisceau émergent issu d'un point objet situé « à l’infini » et traversant une lunette afocale. Établir l’expression du grossissement d’une lunette afocale. Exploiter les données caractéristiques d’une lunette commerciale. Réaliser une maquette de lunette astronomique ou utiliser une lunette commerciale pour en déterminer le grossissement. Vérifier la position de l'image intermédiaire en la visualisant sur un écran.
B) Décrire la lumière par un flux de photons
Notions et contenusCapacités exigibles Activités expérimentales support de la formation
Savoirs :
Le photon : énergie, vitesse, masse. Effet photoélectrique. Travail d’extraction
Savoir-faire
Décrire l’effet photoélectrique, ses caractéristiques et son importance historique. Interpréter qualitativement l’effet photoélectrique à l’aide du modèle particulaire de la lumière. Établir, par un bilan d'énergie, la relation entre l’énergie cinétique des électrons et la fréquence. Expliquer qualitativement le fonctionnement d’une cellule photoélectrique.
Savoirs :
Absorption et émission de photons. Enjeux énergétiques : rendement d’une cellule photovoltaïque.
Savoir-faire
Citer quelques applications actuelles mettant en jeu l’interaction photon-matière (capteurs de lumière, cellules photovoltaïques, diodes électroluminescentes, spectroscopies UV-visible et IR, etc.). Déterminer le rendement d’une cellule photovoltaïque.